# Grade 7 and 8 Probability Review Worksheet

| Name: | Date: |
|-------|-------|
|       |       |

## **Grade 7 and 8 Math Curriculum Expectations**

- **Grade 7:** Solve problems that involve determining the theoretical probability of independent events and the experimental probability of an event using a large number of trials.
- **Grade 8:** Use a variety of tools and strategies to estimate and calculate the probability of events, including compound events.

## **Part A: Theoretical Probability**

#### 1. Basic Probability

- a) What is the probability of rolling a 3 on a standard six-sided die?
- b) What is the probability of drawing a red card from a standard deck of 52 cards?
- c) A box contains 3 red marbles, 5 blue marbles, and 2 green marbles. What is the probability of drawing a blue marble?

#### 2. Independent Events

- a) What is the probability of flipping a coin and getting heads, and then rolling a six-sided die and getting a 4?
- b) In a bag, there are 4 red balls and 6 blue balls. If you draw one ball, replace it, and then draw another ball, what is the probability that both balls will be red?

## Part B: Experimental Probability

#### 3. Conducting Experiments

- a) Flip a coin 50 times and record the number of heads and tails. Calculate the experimental probability of getting heads.
- b) Roll a six-sided die 100 times and record the outcomes. Calculate the experimental probability of rolling a 5.

## 4. Comparing Theoretical and Experimental Probability

- a) Compare the theoretical probability of getting heads on a coin flip to your experimental results from 3a. Explain any differences.
- b) Compare the theoretical probability of rolling a 5 on a six-sided die to your experimental results from 3b. Explain any differences.

## **Part C: Compound Events**

#### 5. Combined Probabilities

- a) A spinner is divided into 4 equal sections labeled A, B, C, and D. What is the probability of spinning an A and then a B on two consecutive spins?
- b) Two six-sided dice are rolled. What is the probability of getting a sum of 7?

#### 6. Using Trees and Tables

- a) Create a tree diagram to represent the possible outcomes of flipping a coin twice. What is the probability of getting two heads?
- b) Use a table to list all possible outcomes when rolling two six-sided dice. What is the probability of rolling a double (same number on both dice)?

#### Part D: Reflection

## 7. Thinking Critically

- a) How does increasing the number of trials in an experiment affect the experimental probability?
- b) Why is it important to understand both theoretical and experimental probabilities? Provide an example from real life where both are useful.

## **Answers Key:**

# Part A: Theoretical Probability

- 1a)  $\frac{1}{6}$ 1b)  $\frac{26}{52} = \frac{1}{2}$ 1c)  $\frac{5}{10} = \frac{1}{2}$
- 2a)  $\frac{1}{2} imes \frac{1}{6}=\frac{1}{12}$
- 2b)  $\frac{4}{10} \times \frac{6}{10} = \frac{12}{100} = \frac{4}{25}$

# Part B: Experimental Probability

- 3a) Example: 24 heads, 26 tails  $\rightarrow P(\text{heads}) = \frac{24}{50} = 0.48$
- 3b) Example: 18 times rolling a 5  $\rightarrow$   $P(5)=rac{18}{100}=0.18$
- 4a) Theoretical P(heads) = 0.5; Experimental P(heads) = 0.48. Differences due to sample size and randomness.
- 4b) Theoretical  $P(5)=rac{1}{6}pprox 0.167$ ; Experimental P(5)=0.18. Differences due to sample size and randomness.

# Part C: Compound Events

- 5a)  $\frac{1}{4} imes \frac{1}{4} = \frac{1}{16}$
- 5b)  $\frac{6}{36} = \frac{1}{6}$
- 6a) Tree diagram: HH, HT, TH, TT  $ightarrow P(\mathrm{HH}) = rac{1}{4}$
- 6b) Table: 6 outcomes for doubles  $\rightarrow P( ext{double}) = rac{6}{36} = rac{1}{6}$

# Part D: Reflection

- 7a) Increasing trials usually makes experimental probability closer to theoretical probability.
- 7b) Understanding both helps in predicting ar unalyzing outcomes. Example: Weather forecasting uses theoretical models and experimental data to predict weather.