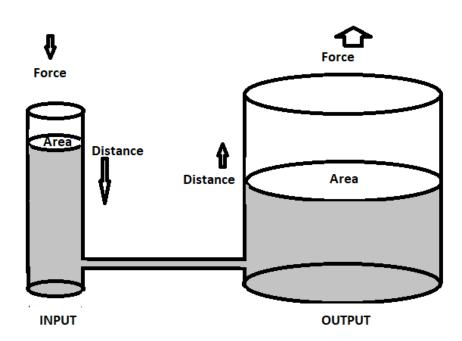
Grade 8 Science Fluids - Pressure, Pascal's Law and Hydraulic Advantage

Name:	Class:	Date:

What is pressure?

What is PSI?


What is 1 Pascal equal to?

Why is liquid ideal for hydraulics?

Why are gases not good for hydraulics?

Why are solids not good for hydraulics?

How do we create Hydraulic Advantage in a closed system?

How do we calculate Hydraulic Advantage? What three ways can we calculate Hydraulic Advantage? 1 - SAR(HA = Output Area ÷ Input Area) 2 - SR(HA = Input Distance ÷ Output Distance) (HA = Output Force ÷ Input Force) 3 – MA or HA Once you find one ratio or have the Hydraulic Advantage (also known as Mechanical Advantage), you can calculate the other part of each ratio: Hydraulic Advantage = Mechanical Advantage = F_{out} : $F_{in} = A_{out}$: $A_{in} = D_{in}$: A_{out} Use this information and the work on the board to answer the following questions. 1. What is the Hydraulic Advantage of a system with an input piston with an area of 3 cm³ and an output piston of 27 cm³? 2. What is the Hydraulic Advantage of a system that raises the output piston a distance of 2.5 cm when the input piston moves 50 cm? 3. If an input force of 40 N creates an output force of 960 N, what is the hydraulic Advantage? 4. If the Hydraulic Advantage is 7 and the input distance is 52.5 cm, what is the output distance? 5. If the area of the input piston is 1 cm³ and you apply a force of 300N, what would be the output force if the area of the output piston is 12 cm³?