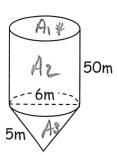
10.8	Compo	site	Sol	ids
------	-------	------	-----	-----

Worksheet

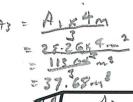

Name	
Period	

Keep answers in terms of Π , unless indicated to round to the nearest tenth.

A well, with a cylindrical wall of 50 m. and a diameter of 6 m., is dug. The bottom of the well is tapered to a cone with slant height of 5 m. Building codes require the well to be covered.*

Pythagorean triplet B=N 22-AZ =N25MZ-0

=3.14 x 3n + 5n = 47.1m2


A3 = Trs

Find the amount of material needed to construct the surface area of the well. AZ=ZMTXH

AT = A1 + A2 + A3 = 28.26m + 94222 + 47.10 A1 = 3.14 × 3 m × 3 m = 1017.36 m2 = 3.14 × 9 m² = 28.3 m² 3. Find the volume of water that this well could hold.

VT= VA2 + VA3 VAZ = A1 x H = 1413 m3 + 37.68m3 = 28.26 m2 x Son = 1450.68m3 = 1418 m3

: The total rolune is 1450.7 m A small lead pencil has a cylindrical base and a conical point.

7) r = 0.5cm

2 cm

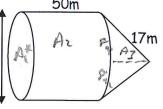
Round to the nearest tenth

5. Find the surface area of the whole pencil.

4. Find the slant height of the cone. (Use the Pythagorean theorem.) The slant howest to ten nearest yearth

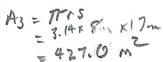
= 2 x3. 14 x3 m x50m

SAT = A1 + A2 + A3

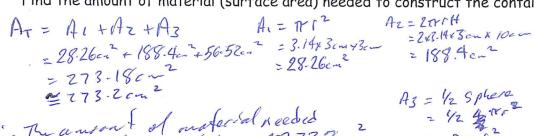

= 3.297.2+ 47.1+2+ 0.785.2 = 3.14x - 5cu x2-lan = 3.14 cm x15c = 2.14x - 5cu x2-lan = 3.14x - 5cu x2-lan = 0.785cm = 0.785cm = 516.182 cm = 3.297.2m3 = 47.1cm² = 0.785cm² = 51.182 ~

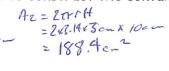
. The surface area of the perceil Fs 51.2 cm (to the marest A rocket has dimensions as shown to the right. The entire rocket is filled with fuel.

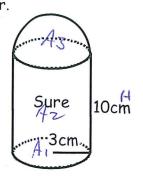
6. Find the height of the cone?


172/15m H= N(74=842

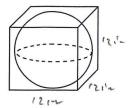
7. Find the amount of material needed to construct the surface area of the rocket.


ATTEND = 400-96m2+2934.04.2 200.96m2 = 2512 m2+ 427.04m2 = 3140m2 = 2939.04~


: Total surface/someonles motor el : 3 2939 . Oth 8. What is the volume of fuel that the rocket may contain?

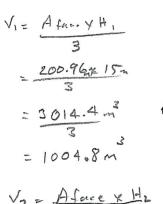

= VAZ + VA3 VAZ = A1 K H = 200.96 m2 x 50 m Total volume is 11052.8 m

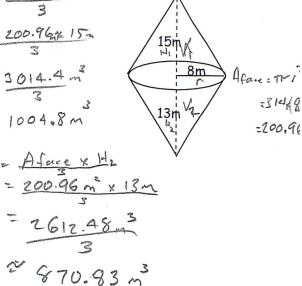
9. A stick of Sure Solid deodorant is shown to the right. Find the amount of material (surface area) needed to construct the container.


to construct the container is 273. Time

The sphere just fits in a cube with edges 12 in. long.

10. What is the radius of the sphere? The radius of the sphere? deaneter, soit is 12m2? 00 6 in a


11. What is the volume of the space between the sphere and cube? Round to the nearest tenth.


12. Find the volume of the composite solid. Round to the nearest tenth.

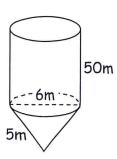
:. The space left is 823. 7. "

: The volume is 1875.6m.

10.8 Composite Solids

Worksheet

Name	
Period	


Keep answers in terms of Π , unless indicated to round to the nearest tenth.

A well, with a cylindrical wall of 50 m. and a diameter of 6 m., is dug. The bottom of the well is tapered to a cone with slant height of 5 m. Building codes require the well to be covered.

$$b = \sqrt{c^2 - a^2}$$

$$h = 4m$$

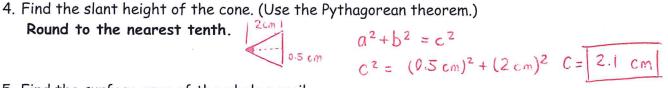
17m

2. Find the amount of material needed to construct the surface area of the well.

$$S_c = \pi r L = \pi (3m)(5m) = 15\pi m^2$$
 $S_T = S_c + S_{cyl} = 324\pi$
 $S_{cyl} = \pi r^2 + 2\pi r h = 9\pi m^2 + 2\pi (3m)(50m) = 309\pi m^2$

3. Find the volume of water that this well could hold.

$$V_{T} = V_{C} + V_{CYL}, \qquad V_{CYL} = A_{f} \times h = \pi r^{2} h = 450 \,\pi \text{ m}^{3}$$


$$V_{C} = \frac{A_{f} \times h}{3} = \frac{\pi r^{2} h}{3} = \frac{\pi r^{2} h}{3} = 12 \,\pi \text{ m}^{3}$$

$$V_{T} = 462 \,\pi \text{ m}^{3}$$

$$V_{T} = 622 \,\pi \text{ m}^{3}$$

$$V_{T} = 622 \,\pi \text{ m}^{3}$$

A small lead pencil has a cylindrical base and a conical point.

15 cm

5. Find the surface area of the whole pencil.

Round to the nearest tenth.

$$S_{T} = S_{TIP} + S_{CYL} + S_{EMD}$$

$$S_{CYL} = 2\pi r L = 2\pi (9.5 \text{cm}) (15 \text{ cm}) = 15\pi \text{ cm}^2$$

$$S_{TIP} = \pi r L = \pi (0.5 \text{ cm}) (2.1 \text{ cm})$$

$$S_{END} = \pi r^2$$

$$= 1.05\pi \text{ cm}^2$$

$$= \pi (0.5 \text{ cm})^2 = 0.25\pi \text{ cm}^2$$

A rocket has dimensions as shown to the right. The entire rocket is filled with fuel.

$$g_n = \frac{17m}{a} = \frac{a^2 = c^2 - b^2}{h = 15m}$$

7. Find the amount of material needed to construct $S = \pi r^2 = 64\pi m^2 16m$ the surface area of the rocket.

$$S_{T} = S_{cyl} + S_{c}$$

$$S_{c} = \pi r L = \pi (8m)(17m) = 136\pi m^{2}$$

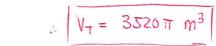
$$S_{cyl} = 2\pi r L = 2\pi (8m)(50m) = 800\pi m^{2}$$

$$S_{T} = 936\pi m^{2}$$

$$S_{T} = 936\pi m^{2}$$

$$S_{T} = 936\pi m^{2}$$

$$S_{T} = 936\pi m^{2}$$


$$S_{T} = 1000\pi m^{2}$$

$$V_{CYL} = \pi r^{2} h = \pi (8m)^{2} (50m) = 3200\pi m^{3}$$

8. What is the volume of fuel that the rocket may contain?

$$V_T = V_{C} + V_{CYL}$$
 $V_{CYL} = \pi r^2 h = \pi (8 m)^2 (50 m) = 3200 \pi m^3$

$$V_c = \frac{A_f \times h}{3} = \frac{\pi r^2 h}{3} = \frac{\pi (8m)^2 (15m)}{3} = 320 \pi m^3$$

9. A stick of Sure Solid deodorant is shown to the right.
Find the amount of material (surface area) needed to construct the container.

$$S_{T} = \frac{S_{SPHERE}}{2} + S_{CVL} + S_{END}$$

$$\frac{S_{SPHERE}}{2} = \frac{4\pi r^{2}}{2} = 2\pi r^{2} = 2\pi (3cm)^{2} = 18\pi cm^{2}$$

$$S_{CVL} = 2\pi rh = 2\pi (3cm)(10cm) = 60\pi cm^{2}$$

$$S_{END} = \pi r^{2} = \pi (3cm)^{2} = 9\pi cm^{2}$$

$$S_{T} = 87\pi cm^{2}$$

The sphere just fits in a cube with edges 12 in. long.

- 10. What is the radius of the sphere? d = 12 in $r = \frac{d}{2} = \frac{12 \text{ in}}{2} = \frac{6 \text{ in}}{2}$
- 11. What is the volume of the space between the sphere and cube?

 Round to the nearest tenth.

$$V_{SPACE} = V_{CUSE} - V_{SPHERE}$$

$$V_{SPHERE} = \frac{4}{3} \pi r^3 = \frac{4}{3} \pi (6in)^3$$

$$V_{CUSE} = L_{XWXH}$$

$$= (12 in)(12 in)(12 in)$$

$$= 1728 in^3$$

$$V_{SPACE} = 1728 in^3 - 288\pi in^3 \approx 823.2i$$

10cm

12. Find the volume of the composite solid. Round to the nearest tenth.

$$V_{C1} = \frac{\pi r^2 h_1}{3} = \frac{\pi (8 m)^2 (15 m)}{3} = 320 \pi m^3$$

$$V_{C2} = \frac{\pi r^2 h_2}{3} = \frac{\pi (8 m)^2 (13 m)}{3} = \frac{832 \pi m^3}{3}$$

$$T(8m)^{2}(13m) = 832 \pi m^{3}$$

$$V_{T} = 320\pi m^{3} + 832 \pi m^{3}$$

$$V_{T} = 320\pi m^{3} + 832 \pi m^{3}$$

VT = Vait Vcz

$$= \frac{960 \, \text{m}^{3} + 832 \, \text{m}^{3}}{3}$$

$$= \frac{1792 \, \text{m}^{3}}{3} = \frac{1876.6 \, \text{m}^{3}}{3}$$