Grade 7/8 Math 3D figures, Nets and Surface Area Formulas

Name:	Class:	Date:	

3-Dimensional Figure and Name	Net	Formula for Surface Area
Rectangular Prism A3 A1 A2 A2 Acm 7 cm	A3 A1 A2 A3 A3 A1 A2 A3 A3 A2 A3 A1 A2 A3 A3 A2 A3 A3 A3 A3 A3 A3	AT = A1+A1+A2+A2+A3+A3 $AT = 2A1 + 2A2 + 2A3$ $AT = 2(A1 + A2 + A3)$
Triangular Prism 5m A2 9m A3	7cm 5m A1 5m A2 A3 6 A2 A3 6 A2 5m A1 5m	AT = A1+A1+A2+A2+A3 AT = 2A1 + 2A2 + A3
Square Based Pyramid A2 A2 A2 A2 A1	A2 A1 A2	AT = A1 + A2 + A2 + A2 $AT = A1 + 4A2$

Any shape can be broken down into the net – or a representation of all of the faces of that 3D figure. We just have to make sure that we make a sketch and properly label all faces. If a face is the same, call it the same as the other face so that you do not have to calculate it again – but if any dimension is different, you have to make a new face. It is easiest to use the principal face of the figure and that is the one that the figure is named after – **Rectangular** prism, **Triangular** -based pyramid, etc. Make a larger formula and then calculate each face and put them together as a Total Area – AT (Area Total).

For a Cube, AT = 6A1 - since there are 6 identical squares.

For each of the figures above, calculate the Total Area of the figure using the formulas given.

Surface Area Review

Shape	Net	Formula
right rectangular prism		SA = 2(wl + hl + hw) w = width l =length h =height
cube		$SA = 6a^2$ $a = \text{edge length}$
right triangular prism		SA = wh + lw + lh + ls w = width l = length h = height s = side
regular triangular pyramid		$SA = 4\left(\frac{1}{2}bh\right)$ $b = base$ $h = height$
square pyramid		$SA = A_{base} + 4(A_{side})$ $A_{base} = b^{2}$ $A_{side} = \frac{1}{2}bh$ $b = base$ $h = height$