
ALGEBRAIC EXPRESSIONS

$$3(x-8)$$

is
 $3x + (-24)$ or $3x - 24$

$$4x + 12$$
is
 $4(x + 3)$

Survey S Parentheses P \mathbf{C} Catch & Combine ...in equations... Clear Add/Subtract A Clear Division/Multiplication D/M

is 3x + 1

Name ____

Period

+ (

Simplifying Algebraic Expressions by Combining Like Terms

Objective: Students will identify like terms.

Students will simplify algebraic expressions by combining like terms.

Term	Definition	Picture/Example
Terms	Quantities that you ADD to form an algebraic expression are called terms.	There are 3 terms in 4n + 6b - 8 The terms are:
Like Terms	terms with the same variable raised to the same power	
You can COMBINE Like	You CAN add/subtract	
Terms	like terms.	
**COMBINE means add, so use the		
addition rules		
(SSS, DSD)		
Unlike Terms	terms whose variables	
	are not the same, or who have the same	
	variable, but it's raised	
	to a different power	
	You CANNOT add/subtract unlike terms.	

For each algebraic expression, identify the number of terms. Then list the coefficients and any constant terms.

	6a + 3	6a - 3	0.2x - y + 8z	<u>1</u> 2n
Expression				
Number of Terms				
Coefficient(s)				
Constant(s)				

Identify the number of terms, the coefficients, and the constant term of the expressions below.

1.
$$7p - 6pc + 3c - 2$$

Number of terms:	
------------------	--

Number of terms:

Coefficients:

Constant terms:

To simplify by combining like terms:

1. Search for like terms (same variable raised to the same power; and constants with other constants).

- 2. Catch the first term and any like terms.
- 3. Combine them using the addition rules. (SSS, DSD)
- 4. Continue with other like terms.

*Remember that an "invisible 1" lurks in front of variables that appear to have no coefficient attached to them.

1)
$$4x + 5x + 7 + x + 2$$

$$2)$$
 $2n + 3 - 5n + 6$

3)
$$-9b + 2n - 4 + 2b$$
 4) $-7g + 3 - 8 - 3g + 7h$

5) -8 + 2d - 7 - 5d + 12

Identify the number of terms, the coefficient(s), and the constant term(s) of the expressions below.

1. **6p - 7pc + 9c - 4**

+ **C**

Number of terms: _____

Number of terms:

Coefficients:

Coefficients:

Constant terms:

Constant terms:

3. Sarah was asked to identify all coefficients and constants of the expression $\mathbf{4} + \mathbf{n} + \mathbf{7m}$. She said that 4 is a constant, and 7 is a coefficient.

What is her error?

- a. She did not include the constant 1.
- b. She said 4 is a constant. It is actually a coefficient.
- c. She did not include the coefficient 1.
- d. She said 7 is a coefficient. It is actually a constant.

4. Add.
$$2a + 8 + 4b + 5$$

5. Add.
$$8x - 7 + 6x + 8$$

6. Find the sum.
$$8x + 2 - 9x + 7$$

7. Find the sum.
$$3n + 4 - 8n - 1$$

Variable	A symbol used to represent an unknown amount. The symbol is usually a letter	
	of the alphabet.	
Coefficient	The number being multiplied by a variable.	
	It is the number attached to	
	the variable, and is <i>usually</i> in front.	
*Special	A variable with <u>no</u> coefficient has an "INVISIBLE 1"	
note!	attached to it!	
Constant	A number that doesn't change. There is no variable attached	
	to a constant.	
Algebraic Expression	An expression that contains variables.	

Expanding Algebraic Expressions (The Distributive Property) day 1

Objective: Students will simplify algebraic expression using the distributive property.

Term	Definition	Example
Distributive The distributive property combines multiplication with addition and subtraction		

You can multiply constants and algebraic terms simply by multiplying the constant and the coefficient.

The variable remains the same.

Remember, if the variable has no coefficient, it's an invisible 1.

a.
$$2(3x) =$$

d.
$$-3y(4) =$$

You can also multiply variables by one another.

But what happens when you have more than one term inside the parentheses?

Examples:
$$2(n + 4)$$

$$3(x - 8)$$

The Distributive Property

x P (clear Parentheses)

Step 1: Catch the number touching the parentheses (on the outside) and any number inside that has a sign.

Step 2: Multiply the number on the *outside* of the parentheses by the FIRST number *inside* the parentheses.

I "times" over the rainbow ©

Step 3: Multiply the number on the *outside* by the SECOND number that's inside.

Examples:

1.
$$3(4x + 2)$$

$$-3(4x + 2)$$

3.
$$-3(4x-2)$$

1.
$$5(x + 3)$$

b.
$$2(x + 1)$$

c.
$$4(x + 5)$$

2.
$$-3(x + 4)$$

b.
$$-6(x + 5)$$

c.
$$-1(x + 4)$$

3.
$$-4(x-4)$$

b.
$$-8(x - 3)$$

c.
$$-1(x - 7)$$

4.
$$-3(2x - 5)$$

b.
$$-2(4x - 7)$$

5.
$$a(b - 4)$$

b.
$$n(d + 1)$$

c.
$$y(5 - z)$$

6.
$$2a(3p - 5)$$

b.
$$4n(6d + k)$$

a.
$$3(x + 2)$$

b.
$$5(2y-7)$$
 c. $-2(n+9)$

c.
$$-2(n + 9)$$

d.
$$-3(k-1)$$

e.
$$-4(1 + a)$$

g.
$$-1(3x + 4)$$

h.
$$-3(b-9+2y)$$
 i. $-5(2-m)$

i.
$$-5(2 - m)$$

j.
$$3(n-4+5y)$$

k.
$$-6(j - 2 + 3k)$$
 l. $-1(3 - h)$

I.
$$-1(3 - h)$$

Expanding Algebraic Expressions (The Distributive Property) day 2

Let's review using the distributive property:

x P

1.
$$3(x-4)$$

3.
$$-5(x-5)$$

4.
$$\frac{1}{2}(10)$$

5.
$$\frac{1}{2}(12)$$

6.
$$\frac{1}{3}(9)$$

7.
$$\frac{1}{4}(16)$$

8.
$$\frac{1}{2}(6x+10)$$
 9. $\frac{1}{2}(8x-4)$

9.
$$\frac{1}{2}(8x-4)$$

10.
$$\frac{1}{3}(12x+9)$$

11.
$$\frac{1}{3}(15x-3)$$
 12. $5(2x+1-n)$

12.
$$5(2x + 1 - n)$$

Students will simplify algebraic expression using the distributive Objective: property. Students will recognize that a problem can be written in different forms. Students will recognize that some problems that have parentheses, may NOT require the dist. property.

Remember!

The distributive property is multiplication over addition or subtraction. This means that in order to distribute, you must have a term (constant or variable) that is touching parentheses that contain more than one term. Those terms must be separated by addition or subtraction signs, NOT multiplication or division signs.

ERROR ALERT!

Some addition and subtraction problems look very similar to distributive property problems.

- Ex. -3(x + 7) This expression requires the distributive property.
 - (5-x)(-2) This expression requires the distributive property.
 - (5-x)-8 and $2(n \cdot 4)$ These expressions do not!
- 1. Circle the problems that require the distributive property. Put an X through those that do NOT require the distributive property.

$$-a(3 + b)$$

$$-a(3 + b)$$
 $(-a)(3) + (b)$ $(3 + b) - a$ $(3 + b)(-a)$

$$(3 + b) - a$$

$$(3 + b)(-a)$$

$$4(2 \bullet n)$$
 (3 - g)(-5)

SHOULD I USE THE DISTRIBUTIVE PROPERTY??

YES	NO
-3(x + 1)	-3 + (x + 1)
(2x - 4)(3)	(2x - 4) + 3
(3 + y)(-2)	$(3 \cdot y)(-2)$

Ex.
$$-4(2n + 5)$$

a.
$$3(4x + 2)$$

b.
$$-5(y-7)$$
 c. $-2(n+9)$

c.
$$-2(n+9)$$

d.
$$3(-1-5c)$$

e.
$$x(3 + 4y)$$

f.
$$-1(a - 1)$$

g.
$$\frac{1}{2}(4x - 6)$$

$$-\frac{1}{4}(8x+12)$$

h.
$$-\frac{1}{4}(8x + 12)$$
 i. $\frac{3}{4}(8x - 12)$

Expand the expressions that require the distributive property. Put an X through the expressions that do not require the distributive property. REMEMBER—you can only distribute (multiply) over addition or subtraction!

1.
$$-6(a + 8)$$

2.
$$4(1 + 8x + a)$$
 3. $(-5n + 7)6$

$$3. (-5n + 7)6$$

$$4.2 + (4k - 3)$$

6.
$$-8(-b-4)$$

7.
$$(3)(y)(-2)$$

9.
$$-4(-6p + 7)$$

$$\frac{1}{3}(9n + 15)$$

12.
$$\frac{1}{2}(6b-10)$$

Simplifying Algebraic Expressions by Distributing and Combining Like Terms

Simplifying Algebraic Expressions by Distributing and Combining Like Terms

S P C = A D/M

Objective: Students will simplify algebraic expressions by combining like terms.

Students will recognize when the distributive property is required to simplify an expression and when it is not.

Before simplifying an expression that contains parentheses, you must determine whether or not you need to use the distributive property. If so, DO IT FIRST!

A. Simplify the expressions below (Hint: ONE of them needs dist. property).

a.
$$2x + 5 + (6x + 1)$$

b.
$$2x + 5 + 6(x + 1)$$

B. Sometimes you will need to CATCH the term (including a subtraction sign) before you distribute.

1.
$$x - 2(x + 3)$$

3.
$$4h - 3(2h + 5)$$

Simplify. (Ask... Do I need to distribute? If so, do it FIRST!)

1.
$$3(x + 6y - 7)$$

S P C = A D/M

2.
$$-7(2x - 4)$$

3.
$$4(3x + 7) - 5x$$

4.
$$3x - 2(-4x + 5)$$

Extra Practice

S P

 C

Rewrite the expressions without parentheses. (Hint: check for dist. property first!) Then simplify.

1.
$$8 + (2x - 1)7$$

2.
$$-3(3x - 5) + 8x$$

3.
$$9x + 2 + (3x - 7)$$

4.
$$12x + (-4x + 1)3$$

5.
$$2y + 7(2y - 3)$$

6.
$$-8y + 4(3y + 3) - 5$$

7.
$$-4 + (3n - 5) - 7n$$
 Notice the difference between #7 and #8. 8. $-4(3n - 5) - 7n$

8.
$$-4(3n - 5) - 7r$$

HOMEWORK

1a.
$$-3(2x - 3y - 5)$$

2a.
$$(b-7)+(3b-9)$$

2b.
$$(-6x - 11) + (5x + 12)$$

$$3a. -2(-4x + 5) + 6x$$

3b.
$$7x + 3(-2x + 3)$$

4. For each algebraic expression, identify the number of terms. Then list the coefficients and any constant terms.

Expression	8x - 3	4x + y + 11
Number of Terms		
Coefficient(s)		
Constant(s)		

Simplifying Algebraic Expressions by Distributing and Combining Like Terms

 $_{x}$ \mathbf{P}

1.a
$$3(x + 6y - 7)$$

1.b.
$$-7(2x - 4)$$

Distribute first.... then catch and combine like terms.

x P

$$2a. 4(3x + 7) - 5x$$

Ask... Do I need to distribute? If not, Catch and Combine Like Terms.

$$3a. \quad 5x + 6y - 4x + 3y - 9$$

3.b.
$$-9x + 7 - x + 5x - 4y$$

Ask... Do I need to distribute? If so, do it first. Then "Bring Down the Junk." If not, drop the parenthesis and then catch and combine like terms.

$$4a. (x - 5) + (4x - 2)$$

4b.
$$6x + 4(-2x + 3)$$

Rewrite the expression <u>without parentheses</u>. Ask...

Do I need to distribute? If so, do it first. Then

"Bring Down the Junk." If not, drop the parenthesis and then catch and combine like terms.

1.
$$7(2x - 1) + 8$$

2.
$$-3(3x - 5) + 8x$$

3.
$$9x + 2(2x - 7)$$

4.
$$12x + 3(-4x + 1)$$

5.
$$12y + 7(2y - 3)$$

Adding and Subtracting Algebraic Expressions

Objective: Students will add and subtract algebraic expressions.

Recall that only *like terms* can be added or subtracted.

Simplify the following problem by combining like terms.

Ex 1:
$$(2n + 3) + (4n + 5)$$

Ex 2:
$$(-3h + 2) + 3(4h - 2)$$

***Subtraction of expressions can be especially difficult!

Note the difference between the two problems below.

Which problem requires the distributive property to simplify it? _____

Rewrite using the distributive property where necessary.

$$(8x - 3) + 2(3x + 1)$$

$$(8x-3)+2(3x+1)$$
 and $(8x-3)-2(3x+1)$

Note the difference between the two problems below. Which problem requires the distributive property to simplify it?

Rewrite using the distributive property where necessary.

$$(7x-3)+1(4x+1)$$
 and $(7x-3)-1(4x+1)$

Recall that often times in math the 1 is "invisible", as is a -1.

Here are the same problems rewritten with an "invisible" 1.

$$(7x-3)+(4x+1)$$
 and $(7x-3)-(4x+1)$

HOWEVER, that means when there is a subtraction sign between expressions, you must think of it is as distributing a -1.

a. Distribute the -1

b. Distribute the -1

$$(6n-5)-(2n+1)$$
 $(8a+1)-(2a+4)$

c. Distribute the -1

d. Distribute the -1

$$(5h - 4) - (2h + 1)$$

$$(2n + 4) - (n - 1)$$

e. Distribute the -1

$$(-2x - 5) - (6x + 3)$$

$$(-3y + 1) - (4y + 8)$$

1. Distribute the -1

$$(6h + 4) - (2h + 3)$$

2. Distribute the -1

$$(6h + 4) - (2h - 3)$$

3. Distribute the -1